

LEF – Prozesskontrolle in der additiven Fertigung

20-04-2021

Infrarotkameras für die Prozesskontrolle

Dr. Oliver Schreer

Inhalt

LEF 2021

IR-Kamera-Technologie

Wärmestrahlung

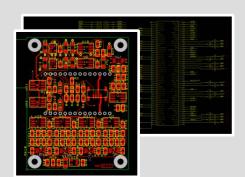
Temperaturmessung

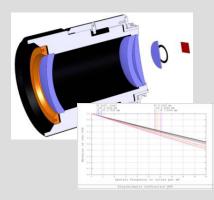
Quotientenpyrometrie

Anwendungsbeispiele

IRCAM: IR-Kamera Entwicklung und Produktion

LEF 2021


Produktion


IR-Detektor Integration

Elektronikentwicklung

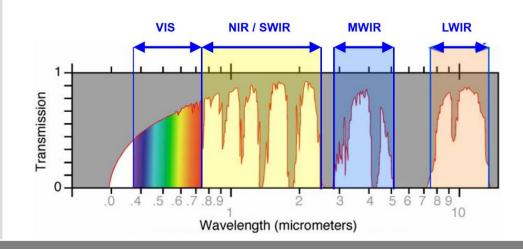
Mechanikentwicklung

Optikentwicklung

Was "sehen" Infrarotkameras?

LEF 2021

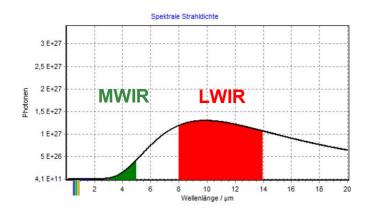
Physik


- IR-Kamera empfindlich für IR-Strahlung
- IR-Strahlung = Temperaturstrahlung (meist)
- IR-Intensität = f (Temperatur) → Planck
- IR-Strahlung ist "taghell"
- IR-Emissionsgrad: 0 .. 1 (0 % .. 100 %)
- Spektrale Eigenschaften
- Transmission, Reflexion

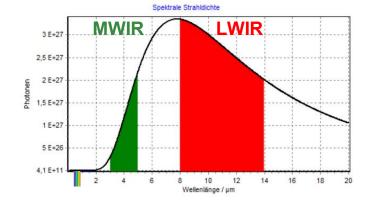
Anwendungen

- Temperaturmessung
 - berührungslos
 - bildgebend
 - schnell (1 µs 1 ms / Bild)
- Zerstörungsfreie Prüfung
 - → verborgene Defekte
- · Prozessbeobachtung/-kontrolle
 - Rückkopplung

Wärmestrahlung (1)


LEF 2021

Mit der Temperatur ändert sich ...


- Strahlungsintensität
- Spektrale Verteilung

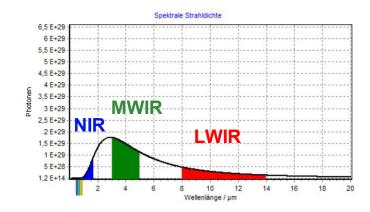
Niedrige Temperaturen (Kunststoffverarbeitung)

→ MWIR- & LWIR-Kameras

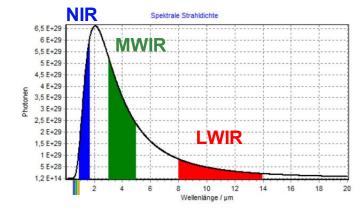
100 °C

200 °C

Wärmestrahlung (2)


LEF 2021

Mit der Temperatur ändert sich ...

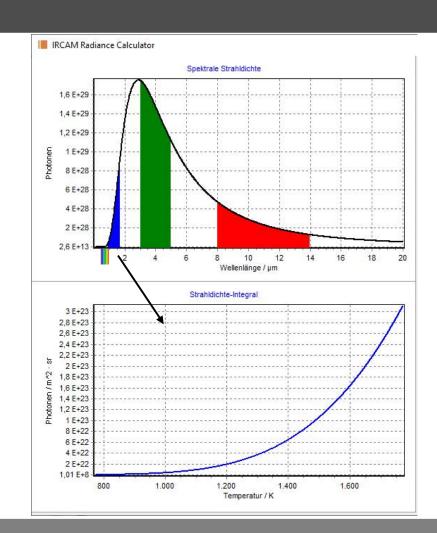

- Strahlungsintensität
- · Spektrale Verteilung

Hohe Temperaturen (Metallverarbeitung)

→ NIR-, MWIR- & LWIR-Kameras

1000 °C

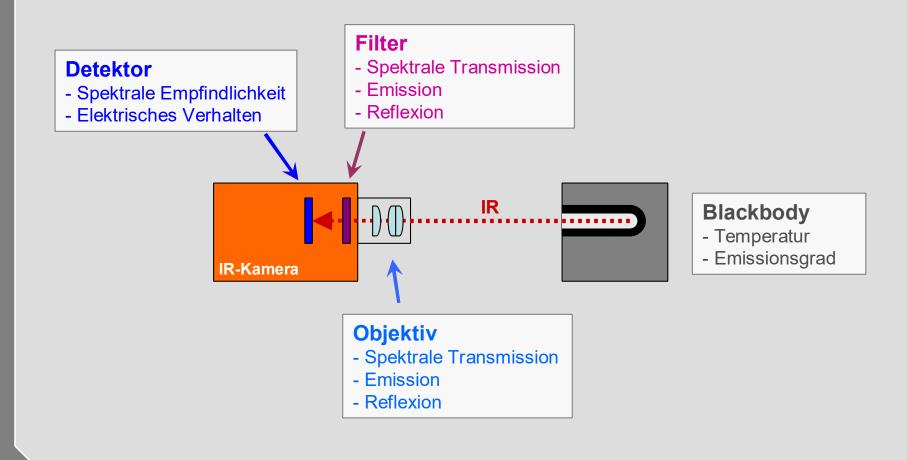
1500 °C



Wärmestrahlung (3)

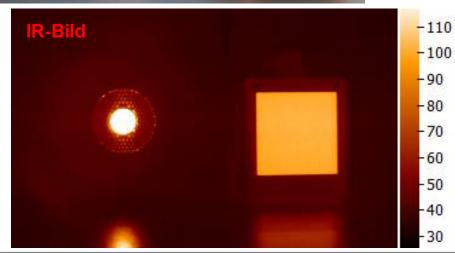
LEF 2021

Referenz-Messungen und ein radiometrisches Modell (Software) ermöglichen die Zuordnung


IR-Signal ↔ Temperatur

Temperaturmessung: Radiometrisches Modell und Referenz-Messungen

LEF 2021

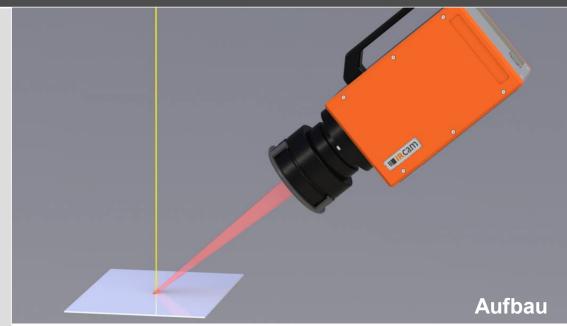


Temperaturmessung: Referenzen

LEF 2021

Referenz-Strahlungsquellen

IR-Emissionsgrad-Problematik


LEF 2021

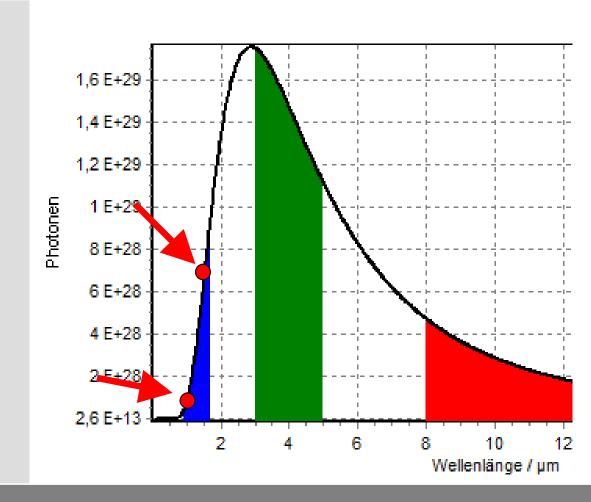
Beispiel Laser-Schweißen

- Emissionsgrad abhängig von Material
- · Emissionsgrad abhängig von Phase
- Emissionsgrad abhängig von Oberfläche
- Emissionsgrad abhängig von Temperatur?
- Dynamischer Prozess
- Rauchentwicklung -> IR-Abschwächung

Infrarot-Intensität abhängig vom Emissionsgrad

→ Temperaturmessung kaum möglich

Gefördert durch


Quotientenpyrometrie: Prinzip

LEF 2021

Emissionsgradunabhängige Temperaturmessung

Statt der Gesamt-IR-Intensität in einem Spektralbereich wird das **Verhältnis** der Intensitäten bei zwei Wellenlängen bestimmt.

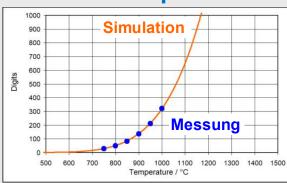
Hardware für Quotientenpyrometrie

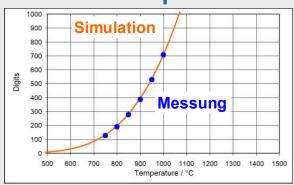
LEF 2021

Kamera-Eigenschaften

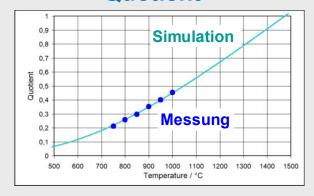
- Zwei Bildsensoren
- Strahlteiler
- Spektralbereich: 0.9 1.7 μm
- 640 x 512 Pixel
- Vollbild-Frequenz 177 Hz
- Teilbild-Fähigkeit
- MIO Schnittstelle
- · Camera Link Schnittstelle

GEFÖRDERT VOM




Quotientenpyrometrie: Messung vs. Simulation

LEF 2021

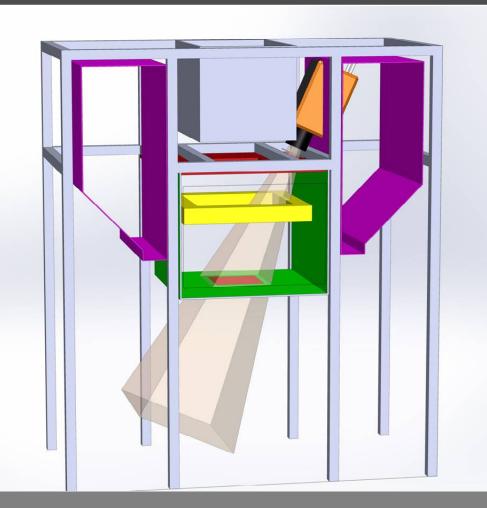

NIR Bandpass 1

NIR Bandpass 2

Quotient

GEFÖRDERT VOM

Bundesministerium
für Bildung
und Forschung



Anwendungsbeispiel

LEF 2021

Laser-Sinter-Anlage für Kunststoff

- Messung der Temperaturverteilung in Pulverbett und erzeugtem Bauteil
- Hochauflösende MWIR-Kamera
- ggf. Rückkopplung zum Laser / zur Anlagensteuerung

Anwendungsbeispiel

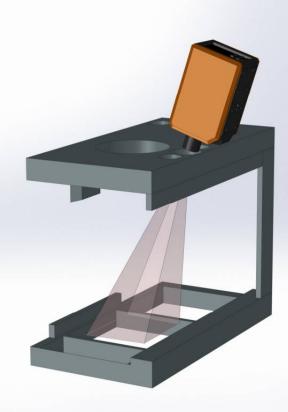
LEF 2021

Anlage für drahtbasiertes Laser-Auftragsschweißen von Metallen

- NIR Spektralbereich
- 640 x 512 Pixel
- Bildfrequenz 177 Hz

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages



Anwendungsbeispiel

LEF 2021

Metall-Laserstrahlschmelzen

- Blick durch Fenster + Filter
- Pulverbett fast vollflächig abgebildet

Anlagen-Bauraum und NIR-Kamera

Gefördert durch

Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie

IR-Bild (Beispiel)

LEF 2021

Vollbild

- NIR Spektralbereich
- 640 x 512 Pixel
- Bildfrequenz 177 Hz
- Belichtungszeit 15 μs

Beobachtungen

- "Hot spot" (> 1500 Grad Celsius)
- Minimaler, nachlaufender "Schwanz"
- · Abfliegende heiße Partikel

Defekterkennung?

Gefördert durch

Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie

LEF 2021

DANKE

für die Aufmerksamkeit